
"Drainage of road surface on 6 or more lane motorways, measures against aquaplaning"

Rural Roads Design meeting nr 5. on April 3th to 4th 2014 in Kopenhagen

Univ.-Prof. Dr.-Ing. Christian Lippold Dipl.-Ing. Anne Vetters

Zones of low drainage

Increase of longitudinal gradient,

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),

- Increase of gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"
- Speed limit on wet road surface

Problem in our guidelines RAA

The planing engineer has to select the measure.

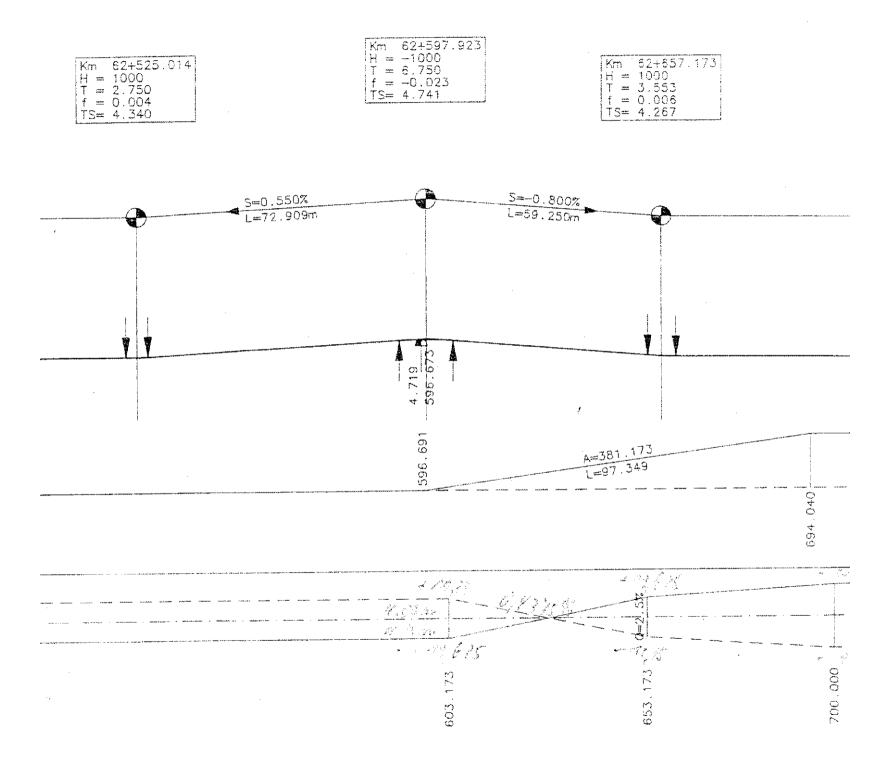
- The planing engineer has to select the measure.
- At present it is necessary to calculate the water film thickness.

- The planing engineer has to select the measure.
- At present it is necessary to calculate the water film thickness.
- There are no boundary conditions for selection.

- The planing engineer has to select the measure.
- At present it is necessary to calculate the water film thickness.
- There are no boundary conditions for selection.
- There is no information about effectiveness, sustainability and economic.

- The planing engineer has to select the measure.
- At present it is necessary to calculate the water film thickness.
- There are no boundary conditions for selection.
- There is no information about effectiveness, sustainability and economic.
- There is no information to possible combinations of different measures.

- The planing engineer has to select the measure.
- At present it is necessary to calculate the water film thickness.
- There are no boundary conditions for selection.
- There is no information about effectiveness, sustainability and economic.
- There is no information to possible combinations of different measures.
- The different road authorities in Germany prefer different measures – there is no consistent opinion.



Research goal / target

- Evaluation of different measures,
- Evaluation of effectiveness
- Evaluation of sustainability
- Evaluation of economic
- Recommendations for the choise of suitable measures or perhaps for combinations of measures which depend on different geometric conditions

Increase of longitudinal gradient,

- Open-pored top layer (porous asphalt),
- Engineering drainage measures (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"
- Speed limit on wet road surface

.

Increase of longitudinal gradient

Advantage

inexpensive

Disadvantage

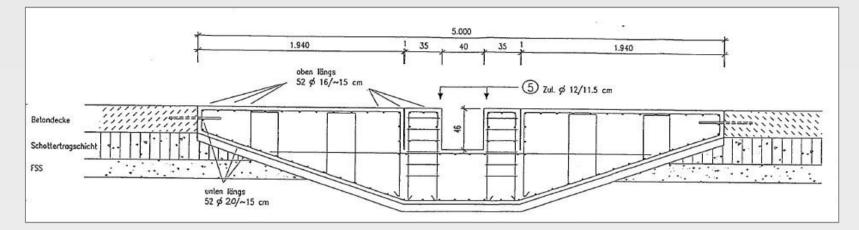
- only on short length
- Only new construction, very difficult in reconstruction

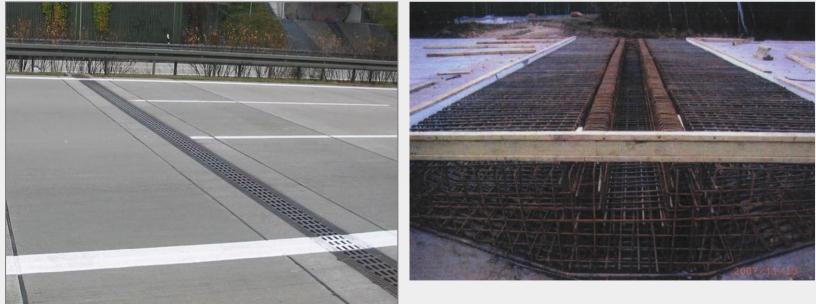
- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "Schrägverwindung"
- Speed limit on wet road surface

Open-pored top layer (pourus asphalt)

Open-pored top layer (pouros asphalt)

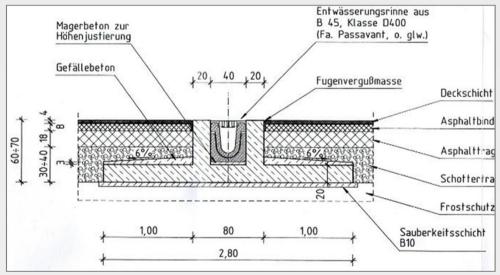
Advantage


high effectiveness


Disadvantage

- very expensive
- high demands on the quality of construction
- Iow permanency / sustainability
- only for asphalt-construction, not for cement-concreteconstruction

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"
- Speed limit on wet road surface

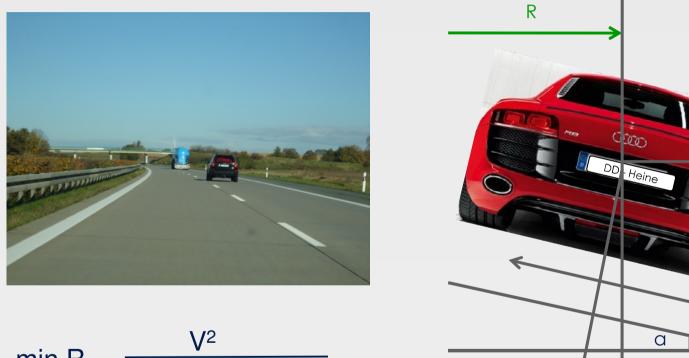


rectangular gutter (asphalt-construction)

rectangular gutter

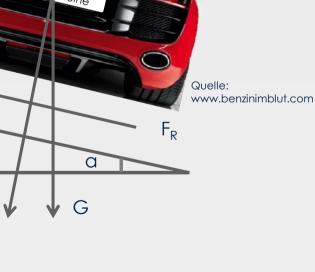
Advantage

- suitable for cement-concrete- and for asphaltconstructions
- high effectiveness
- 1 or 2 gutters are enough
- Durability: about 10 years


Disadvantage

- high demands on the construction
- regular maintenance

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"
- Speed limit on wet road surface



Negative superelevation

min R = $\frac{V^2}{127 (\max f_R \cdot n - q)}$

min R = 4.000 m (V = 130 km/h)

 F_{N}

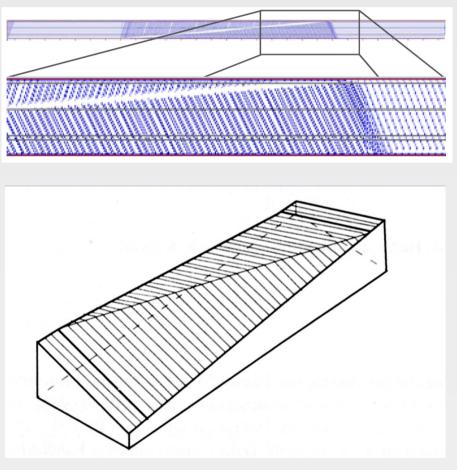
 F_Z

Negative superelevation

Advantage

- high effectiveness
- safe
- no additional costs

Disadvantage


- only for very large curve radii (R > 4.000 m)
- combination with speed limit on wet surface is useful

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crowns (crowns that run diagonally)" (Diagonal torsion)
- Speed limit on wet road surface

"Rolling crown"

"Rolling crown"

Advantage

- high effectiveness (q \ge 2,5 %)
- safe
- no problems with the driveability
- very good for low longiditunal gradients (s < 1,0 %)</p>

Disadvantage

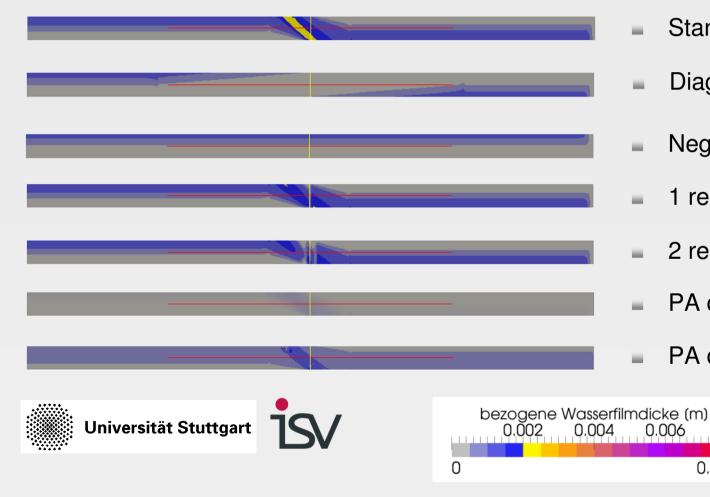
- difficult to construct
- not for cement-concrete pavement

- Increase of longitudinal gradient,
- Open-pored top layer (porous asphalt),
- Constructional measures for drainage (rectangular gutter),
- Avoidance of superelevation transition by application of negative superelevation with very large radii,
- Special form of transition "rolling crown"
- Speed limit on wet road surface

Speed limit on wet surface

Speed limit on wet surface

Advantage


- No costs
- Realisable afterwards
- (limited) effects
- Legally certain / safe

Disadvantage

- Acceptance of traffic authorities is neccessary
- Control is useful

PSRM – Simulation of water film thickness

3 lanes (B = 14,50 m), s = 1, 0 %

- Standard torsion
- **Diagonal torsion**
- Negative superelev.
- 1 regtangular gutter
- 2 regtangular gutters

35

- PA drainage max 10
- PA drainage min

0.008

0.006

Distribution profile depth of tyre for pass. veh.

Quantil	Profile depth
5%	3,0 mm
10%	3,5 mm
15%	4,0 mm
20%	4,0 mm
50%	5,4 mm

Cross section	roughness	s [%]	WFT > 2mm	measure	WFT > 3mm	measure
RQ 31	fine	0	1,72	OPA, 2 gutter, rolling crown	0	-
		1	1,19	OPA, 1 gutter, rolling crown	0	-
		4	0,23	-	0,02	-
	rough	0	> 3,98	OPA, 3 gutter, rolling crown	1,19	OPA, gutter, rolling crown
		1	3,98	OPA, 3 gutter, rolling crown	0	-
		4	1,98	OPA, 2 gutter, rolling crown	0,08	-
RQ 36	fine	0	1,93	OPA, 2 gutter, rolling crown	0	-
		1	1,65	OPA, 1 gutter, rolling crown	0	
		4	0,22	_	0,08	
	rough	0	4,63	OPA, 5 gutter, rolling crown	1,45	OPA, gutter, rolling crown
		1	3,0	OPA, 3 gutter, rolling crown	0,75	OPA, gutter, rolling crown
		4	≥ 3,0	OPA, 3 gutter, rolling crown	0,02	

Example for a selection scheme (WFT = 2mm)

cross section	roughness	s [%]	measure
RQ 36		0	OPA, 2 gutter, rolling crown
	fine	1	OPA, 1 gutter, rolling crown
		1 < s ≤ 4	ŚŚŚ
		≥ 4,0 %	no measure
	rough	0,0 %	OPA, gutter, rolling crown
		≥ 1,0 %	OPA, 3 gutter, rolling crown

Example for a selection scheme (WFT = 3mm)

cross section	roughness	s [%]	measure	
RQ 36	fine	-	no measure	
	rough	0,0 %	OPA, gutter, rolling crown	
		1,0 %	OPA, gutter, rolling crown	
		$1 < s \le 4$	ŚŚŚ	
		≥ 4,0%	no measure	

Questions

- minimum profile of tyres?
- water film thickness?
- physical models to estimate the water film thickness and perhaps a necessary speed limit?
- additional measures in zones of poor / low drainage?
- measures depend on the number of lanes or the width of the cross section?
- speed limit during raining on a wet road surface?
- accidents in such zones of low drainage?

"Drainage of road surface on 6 or more lane motorways, measures against aquaplaning"

Rural Roads Design meeting nr 5. on April 3th to 4th 2014 in Kopenhagen

Univ.-Prof. Dr.-Ing. Christian Lippold Dipl.-Ing. Anne Vetters