

Determination of braking distance and driver behaviour based on braking trials

Poul Greibe M.Sc., Senior consultant pgr@trafitec.dk Trafitec Copenhagen – Denmark www.trafitec.dk

Outline

- Introduction and background
- Measurement programme
- Results from braking trials
- Effects from parameters not included in programme
- New recommended braking distances

Braking distance

One of the most important road design parameters

Braking distance - the most important factors:

- speed
- coefficient of friction between tyres and roadway
- driver's braking behaviour/technique
- vehicle's braking system and condition
- tyre condition
- road's vertical grade

Present method in Danish Road Standards and Guidelines

$$L_{brake} = \frac{V^2}{2 \cdot g \cdot (\mu_{brake} + s) \cdot 3.6^2}$$

$$L_{brake} = braking distance$$

$$V = speed (km/h)$$

g =	acceleration	due to gravity	(9.81 m/s ²)
-----	--------------	----------------	--------------------------

coefficient of	friction
	coefficient of

s = roadway grade

Speed (km/h)	μ _{brake}	L _{brake}
80	0.34	74 m
110	0.30	159 m
130	0.28	237 m

Programme

Study initiated by the Danish Road Directorate

Main purpose:

- to study the braking behaviour among non professional drivers
- to study braking distances at different physical conditions (speed, vehicle, road surface)
- to study relation between braking distance and friction

Parametres in programme

Parameter	Levels	
speed	3	80, 110 and 130 km/h
friction	3	road sections with friction in range 0.4-0.8
road surface	2	wet and dry road surface
vehicle	2	small + medium sized passenger car
tyre type	1	ordinary summer tyres

Measurement programme

2 professional test drivers on each test track

- all combinations (vehicle/speed/road surface)

A total of 72 braking trials

16 non professional test drivers (spread on 3 test tracks)

- almost all combinations (vehicle/speed/road surface)

A total of 115 braking trials

In addition: 30 comfort braking manoeuvres

Non professional test drivers

Sov		Total		
Sex	25-39	40-59	60->	TOLAT
Female	4	1		5
Male	6	3	2	11
Total	10	4	2	16

Test cars

Make: Opel Vectra Model: 1.8 Comfort Year: 2004 Weight: 1275 kg Make: Fiat Grande Punto Model: 1.4 Dynamic Year: 2006 Weight: 1060 kg

Measurement equipment

Tests tracks - Friction values

Те	st track	Friction		
		Dry-section Wet-section		
1	Existing free-way	0.49	0.49	
2	New free-way	0.52	0.64	
3	Air field	0.75	0.74	

Wet road surface

Approx. 1.0 – 1.2 mm water layer

Results – professional test drivers

Results – professional test drivers

Results – professional test drivers

Deceleration values

		Dec _{brake} (m/s ²) in speed interval			
	Dec _{brake} (m/s²)	120-100 km/h	100-70 km/h	70-50 km/h	50-30 km/h
Dry	8.4	8.6	9.1	9.2	9.5
Wet	7.8	8.1	8.3	8.4	8.8

Dec_{brake} (m/s²) in speed interval 70-50 km/h

	Initial speed			
	80 km/h	110 km/h	130 km/h	
Dry	9.1	9.2	9.4	
Wet	8.1	8.6	8.5	

Braking distance and friction

Braking distance and friction

Relation between deceleration, friction and initial speed (only wet road)

$$Dec_{brake} = a \cdot \sqrt{\mu_{fric}} + b \cdot V_0$$

where:

- Dec_{brake} is the average deceleration for the entire braking run (m/s²)
- μ_{fric} is the recorded friction on the test track
- V₀ is the initial speed before braking (m/s)

For the recorded deceleration values on wet road (33 observations), the following results were obtained:

$$Dec_{brake} = 8.79 \cdot \sqrt{\mu_{fric}} + 0.028 \cdot V_0$$
 $R^2 = 0.97$

Estimated L_{brake}

$$L_{brake} = \frac{V_0^2}{2 \cdot Dec_{brake}} = \frac{V_0^2}{2 \cdot (8.79 \cdot \sqrt{\mu_{fric}} + 0.028 \cdot V_0)}$$

Estimated and measured braking distance (L_{brake}) on wet road at different friction values (0.4 - 0.8)

Non-professional test driver

Non-professional test driver – result cont.

- learning effect better braking after 5-6 trials
- male test drivers have shorter L_{brake} compared to female
- age group 50-70 years have the longest L_{brake}
- high speed combined with wet road conditions
 -> cautious braking behaviour
- in general little difference between car 1 and car 2
- comfortable braking deceleration $\approx 3.2 \text{ m/s}^2$

Brake pedal pressure

Test driver	P _{brake}	Time P _{brake} >10 kg
Non professional	35 kg	0.83 sec
Professional	74 kg	0.05 sec

Example:

Brake pedal pressure during braking (110 km/h. wet. test track 3)

Example: Brake pedal pressure and deceleration values 100-70 km/h (only car 1, prof. and non prof., all test tracks)

Results from measurement programme

Recommended braking distance

Effect from parameters not included in the measurement programme

- based on a literature review
- only wet road

Parameter	Effect in relation to:	[min/max]
Make of tyre	Average tyre	-10% - +10%
Winter tyre	Summer tyre	+5% - +35%
Tread depth 1.6 mm	8 mm	+0% - +50%
Make of car	Average car	-10% - +10%
Loaded	Non-loaded	-10% - +15%

Vehicle with poor braking capability have 30-60% longer braking distance compared to test cars used in program

New recommended braking distance

The braking distance should reflect:

- worst-case-scenario road conditions (wet road, friction = 0.4)
- vehicle with poor braking capabilities (little tread depth, winter tyres, loaded. ...)
- braking behaviour among the worst performing drivers

Estimated – based on prof. test drivers

Vehicle increment: +45%

Behavioural increment: +30%

New recommended braking distances

	80 km/h	110 km/h	130 km/h
L _{brake} – professional in test car	40 m	73 m	99 m
Behavioural increment: (+30%)	12 m	22 m	30 m
Vehicle increment: (+45%)	18 m	33 m	45 m
Recommended L _{brake}	70 m	128 m	174 m

Lbrake -> Decc. ~ 3.7 m/s^2

Braking distance for respectively: Measured in programme, Danish Guidelines, Green Book and new recommended values

Braking distance - international values