

### Rural design meeting Oslo, 2011

Randi Eggen

Norwegian Public Road Administration (NPRA)

Traffic Safety, Environment and Technology Department Section: Transport Planning

### Participants

- Germany: Kerstin Lemke
- Netherlands: Sweden:
- Denmark:
- Finland:
- Norway:

Max van Kelegom, John Boender Torgny Bäckström, Torsten Bergh

- Anders Møller Gaardbo, Lene Herrstedt, Kenneth Kemstrup
- Pauli Velhonoja
  - Tor Smeby, Olav Landsverk, Randi Eggen



### Agenda 29. mars

|   | 1000 - 1030: | Welcome and breakfast                                                                                                                                                                   |
|---|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1030 – 1130: | Each country presents topics for<br>discussion and gives an orientation about<br>relevant new research. Each country can<br>spend up to one hour. We start with the<br>Dutch delegation |
|   | 1130 – 1200: | Break                                                                                                                                                                                   |
| • | 1200 – 1300: | Swedish topics presented by the Swedish delegation                                                                                                                                      |
|   | 1300 – 1400: | Lunch                                                                                                                                                                                   |
| • | 1400 – 1500: | German topics presented by the German delegation                                                                                                                                        |
| • | 1500 – 1515: | Break                                                                                                                                                                                   |
|   | 1515 – 1615: | Danish topics presented by the Danish delegation                                                                                                                                        |
| • | 18:00        | Dinner                                                                                                                                                                                  |



### Dinner tonight





### Agenda 30. mars

|   | 0830 – 0930: | Finnish topics presented by the Finnish delegation                                                                                                                                                                                                                |
|---|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 0930 – 0945: | Break                                                                                                                                                                                                                                                             |
| • | 0945 - 1045: | Norwegian topics presented by the Norwegian delegation                                                                                                                                                                                                            |
|   | 1045 -1100:  | Break                                                                                                                                                                                                                                                             |
|   | 1100 - 1130: | Turbo roundabouts by John Boender                                                                                                                                                                                                                                 |
|   | 1130 - 1230: | Lunch                                                                                                                                                                                                                                                             |
| • | 1230 – 1330: | Sight distances not only due to modern<br>brake technology, but also regarding the<br>height of crash barriers and rails, height of<br>objects in the road, and if other countries like<br>Norway have reduced sight distances in<br>tunnels and reasons for that |
| • | 1330 – 1430: | Any other topics? Next meeting?                                                                                                                                                                                                                                   |

vegvesen.no

### Topics for discussion (1)

- 1. The issue on the relation between lane width and construction/maintenance costs.
- 2. What is the policy on centre line markings in the different countries and how do these policies/requirements coincide with geometric design guidelines ? In Sweden: a one line system under 7 m and a two line system over 7 m with single broken lines at sight distances over X (don't remember the value at writing) m. And at lower sight distances, a single warning line, if under 7 m, and a double solid or combined solid-broken if over 7 m. And the solid line is only visualizing the underlying traffic code claiming overtaking to be forbidden at sight restrictions. Other solid lines require an administrative decision and solid lines as well as a traffic sign.
- 3. What speed limits are used for the alternative cross-sections ? For passenger cars, vans, trucks and buses ?
- 4. We have rather tough requirements on inner and outer slopes (1:4 and 1:6 without barriers) and clear zones. The German and Danish recommendations are different ... We consider barriers to be superior to clear zones ... Opinions from other countries ?
- 5. We're also interested in the use of one lane sections but find the German recommendation to use this up to AADT 3000 to be questionable in Sweden and at what lengths ? Experience and any legal implications ?



### Topics for discussion (2)

- 6. We understand the German recommendations to be a onesided 2.5 % crossfall on tangents, 2.5 % in curves 1000-3000 m and up to 7 % under 1000 m and "negative" over 3000 m at a speed limit of 100. Any new research supporting negative cross fall over 3000 m ? Other countries ? Motorways ?
- 7. Sight distances modern braking technology ... shorter sight distances in guidelines ?
- 8. The EU directive on traffic safety any impact on guideline production ? Safety audit on the guideline ? Project audits with the guideline as the recommendation ?
- 9. Motor cycles any impact on your guidelines/recommendations
- 10.Review of guidelines to decrease investment and life cycle costs ?





# Norwegian guidelines for street and road design

Randi Eggen

Norwegian Public Road Administration (NPRA)

Traffic Safety, Environment and Technology Department Section: Transport Planning

### "The norwegian hour"

- Challenges in Norway
- New research and development in connection with the new guidelines
- Improving standard for existing roads
- Questions /topics for discussion



vegvesen.no

### New Norwegian guidelines for road and street design

- The last guideline was published in 2008
- www.vegvesen.no/fag/publikasjoner/ håndbøker/håndbok 017 Veg- og gateutforming
- A new guideline is ready to publish this year



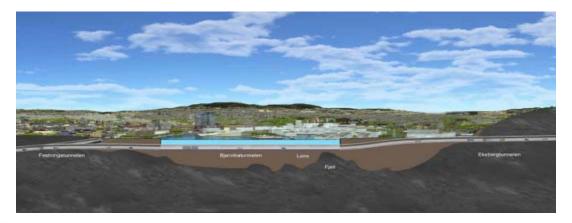
vegvesen.no

### **Road network and accidents**

- From 01.01.2010 the county roads increased with more than 60 %, from 27 000 km to almost 44 000 km
  In addition comes 77 ferry connections.
- The national road network is now 10 500 km with 18 ferry connections. Previous the national roads were about 27 000 km
- Last year 210 persons were killed on Norwegian roads and 673 were severe injured (total 883 persons)



### Road ownership as of 1 January 2010


| Public roads, total:          | 93 214 km |
|-------------------------------|-----------|
| National roads (state-owned): | 10 500 km |
| County roads:                 | 44 000 km |
| Municipal roads:              | 38 515 km |



vegvesen.no

### Immersed tunnel in Bjørvika

- The immersed tunnel lies on the gravel foundation without any other form of foundation being required. The tunnel elements have an unladen weight of 1.1 which means the load exerted on the fjord bottom is marginal.
- See www. Vegvesen.no



vegvesen.no



# News in the proposal to new guidelines

- More detailed description of a standard for improving existing roads
- Considering more use of 2 lane roads with central barriers
- New method for calculating acceleration- and deceleration lanes
- New calculation of speed development for heavy vehicles in steep hills



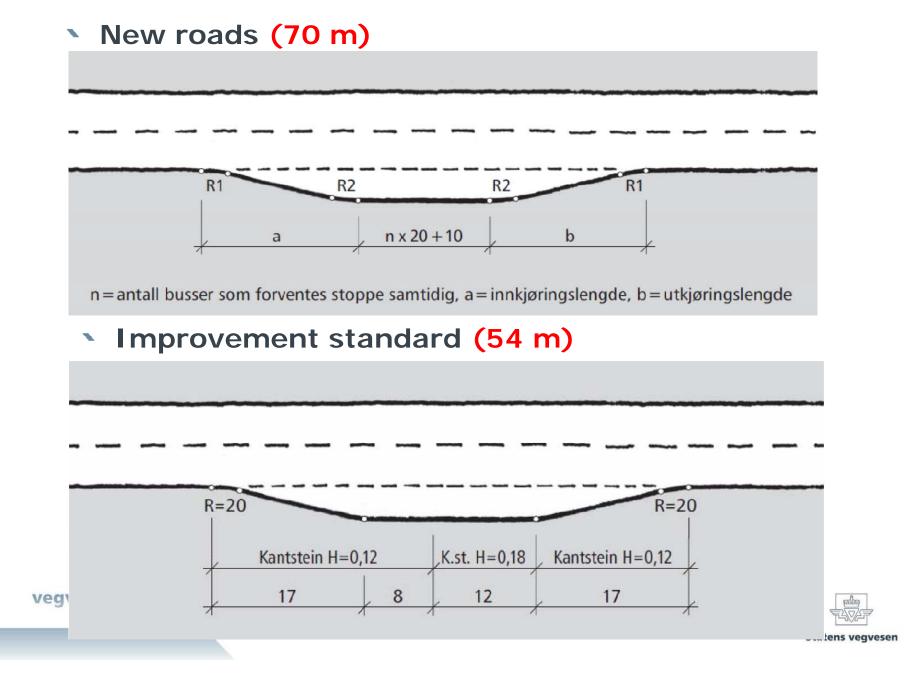




### New research and development (R&D) in connection with the new guidelines

Randi Eggen

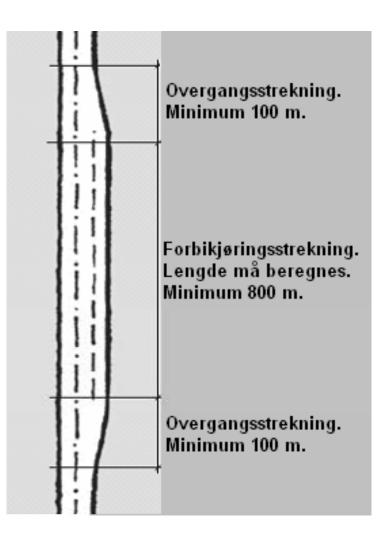
Norwegian Public Road Administration (NPRA)


Traffic Safety, Environment and Technology Department Section: Transport Planning

### R & D

- Testing new bus-stops to use on existing roads which are universal designed (allow all user groups to use the solution)
- We are about to learn more about friction on roads (measuring friction, total friction, breaking friction, safety margins)
- New calculation methods for acceleration- and retardation lanes and overtaking lanes in steep hills for heavy vehicles




### Bus-stop: Improvement standard

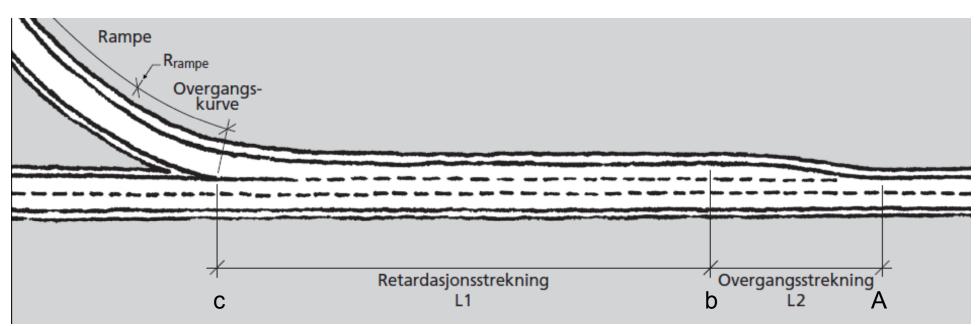


### Lanes for overtaking

- Changes in red:
- Overtaking lanes established in ascents when:
  - ADT > 4 000.
  - The ascending gradient is steep and long enough to give to give big speed difference between heavy and light vehicles.
  - The designed speed difference is > 15 km/h.
  - Overtaking lanes ends where the speed differential between heavy and light vehicles reach 10 km / h.
- A differential speed 20 km/h is acceptable where the number of heavy vehicles per day is less than 400.

A speed differential 20 km/h is acceptable where the speed limit is 90 km/h.



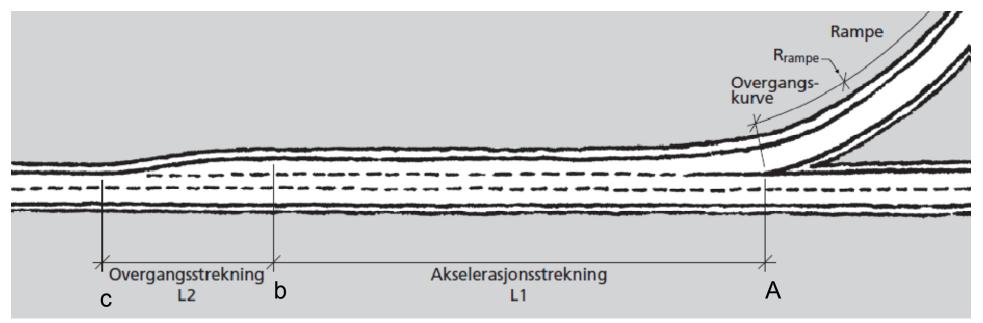



### **Overtaking lanes in steep hills**

- Well-documented assumptions in the new spreadsheet
- Calculations are based on documented input data
- We are using a representative heavy vehicle to calculate the speed development (9kW/ton)

| RUNNLAGSDATA           | (guie (og (  |              |             | ,s) <b>.</b> |              |             |           | GRAFISK FRAMSTILLING (se også eget ark): Versjon 2009-03-22 / AA | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|--------------|--------------|-------------|--------------|--------------|-------------|-----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kommentar: Modell      |              |              |             |              |              |             | -         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |              |              |             |              |              |             |           | Fart- og høydeprofil, 1500 kg 60 kW 5,0 % 25 kg/kW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tidsintervall          | deltaT       |              | sekund      | Brukes for   | å formate    | re grafen   |           | 130                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tyngdeakselerasjon     |              |              | m/s^2       |              |              |             |           |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetthet luft           | rho          |              | kg/m^3      | Ved vanlig   |              | ur og trykk |           | 120                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vindhastighet          | vO           | 0,0          | m/s         | (+ = motvi   | nd)          |             |           | 675                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rullemotstand          | f            | 0,015        |             | Typisk orr   | nråde 0.010  | 0 - 0.020   |           | 110                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Luftmotstand           | CW           | 0,40         |             | Personbil    | 0.30-0.50,   | lastebil 0. | 50 - 0.70 |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Areal                  | A            | 2,0          | m^2         | Personbil    | ca 2 m^2,    | lastebil ca | 8 m^2     | 670                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i Startavstand         | x1           | 0.0          | meter       | For grafis   | (framstilli) | na          |           |                                                                  | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i Starthøyde           | h1           |              | meter       | For grafis   |              |             |           | 90 665                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Starthastighet         | v1           |              | km/t        | . or granor  |              |             |           |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maxhastiqhet           | v max        |              | km/t        |              |              |             |           |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Max akselerasjon       | a max        |              | m/s^2       | KLADD -      | ulike mål    | for effekt  |           | 80 +                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | u_max        |              |             | READD -      |              |             |           |                                                                  | <u>e</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Masse                  | m            | 1500         | kg          | Dreiemom     | ent          |             | Nm        |                                                                  | Høyde [meter]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Maks effekt            | P_max        | 60,0         |             | Turtall      |              |             | o/min     | _ <u>↓</u> _ 655 `                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tilsvarer i HK         |              | 81,6         | HK          | Effekt       |              | 99,5        | kW        |                                                                  | p i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Masse / effekt forho   | d            |              | kg/kW       | Tilsvarer i  | HK           | 135,3       | HK        |                                                                  | E I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |              | 18,4         | kg/HK       |              |              |             |           |                                                                  | - [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Effekt / masse forho   | d            | 40,00        | W/kg        | Effekt i Hk  | <            | 81,6        |           | 50                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                      |              | 54,40        | HK/tonn     | Tilsvarer i  | k₩           | 60,0        | kW        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I<br>I Tidsforbruk     | Lett         | 872          | meter       | 70.0         | km/t         | 44,9        | sek       | 40 - 645                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Tung         |              | meter       | 104,7        |              |             | sek       |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | . ung        | 0.12         |             | 101,1        |              | -14,9       |           | 30                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                      |              |              |             |              |              |             |           | - 640                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| l Angi utnyttelse av e | fekten for h | nver delstre | kning i tab | ellen under  |              |             |           | 20                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Delstrekninger:        |              |              |             |              |              | utnyttelse  | utnyttet  | - Fart - 635                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i                      | stigning     | lengde       |             |              | høyde        | grad        | effekt    |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | S            | L            | fra         | til          | H            | grad<br>U   | P         | —— Høyde                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                      | prosent      | meter        | meter       | meter        | meter        | prosent     | Watt      | 630                                                              | -B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                      | 5,0          | 10000        |             | 10000        | 500,0        | 100         | 60000     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                      | 0,0          |              | 10000       | 10000        | 0,0          | 100         | 60000     | - 0 200 400 600 800 1000                                         | 7-5Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                      | 0,0          | Ō            | 10000       | 10000        | 0,0          | 100         | 60000     | Avstand [meter]                                                  | Children and Child |
| . 4                    | 0,0          | 0            | 10000       | 10000        | 0,0          | 100         | 60000     |                                                                  | ns ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                      | 0,0          | 0            | 10000       | 10000        | 0,0          | 100         | 60000     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Deceleration lanes**




- The deceleration lane L1 (New defined definitions)
- L2 (the transition part) is unchanged

#### Defined transitions

- Point A: The widening begins
- Point b: The widening ends, full lane width is reached. At this point the deceleration begins.
- Point c: the point where both, vertical and horizontal curves, begin to differ from the carriageway.

### **Acceleration lane**



#### The length of the acceleration lane L1

- L2 (the transition part) is unchanged
- Klart definerte punkter
  - Point A: The acceleration lane gets the same vertical and horizontal curve alignment as the primary road. It represent the start of the acceleration lane.

Point b: The start of the transition part L2. At this point the acceleration is finished.

- Point c: the endpoint of the transition section where the with is zero.

JUNEIUS VEMVESEU

### **Acceleration lane**

- Akselerasjonsfelt L1 lengde:
  - Calculated from a spreadsheet
    - Assume a light vehicle about 40 kW/ton
    - Assume 50 km/h when entering the acceleration lane in trumpet / cloverleaf junctions
    - Assume 70 km/h when entering the acceleration lane in diamond junctions
  - We differ on rise and fall. The length of the acceleration lane depend on the rise or fall of the primary road (length direction).

|             |       |         | Kløverblad | -/trompetkryss | Ruterkryss |         |          |          |           |
|-------------|-------|---------|------------|----------------|------------|---------|----------|----------|-----------|
|             | Fart: | 60      | 80         | 90             | 100        | 60      | 80       | 90       | 100       |
| s           | -5    | 70      | 110        | 140            | 180        | 50      | 90       | 120      | 150       |
| T<br>I<br>G | -3    | 70      | 120        | 150            | 200        | 50      | 100      | 120      | 150       |
| N           | 0     | 80 (80) | 150 (150)  | 180 (180)      | 230 (220)  | 50 (40) | 110 (80) | 130 (90) | 180 (120) |
| I<br>N      | 3     | 80      | 180        | 220            | 280        | 50      | 110      | 150      | 230       |
| G           | 5     | 90      | 210        | 250            | 330        | 50      | 120      | 180      | 270       |



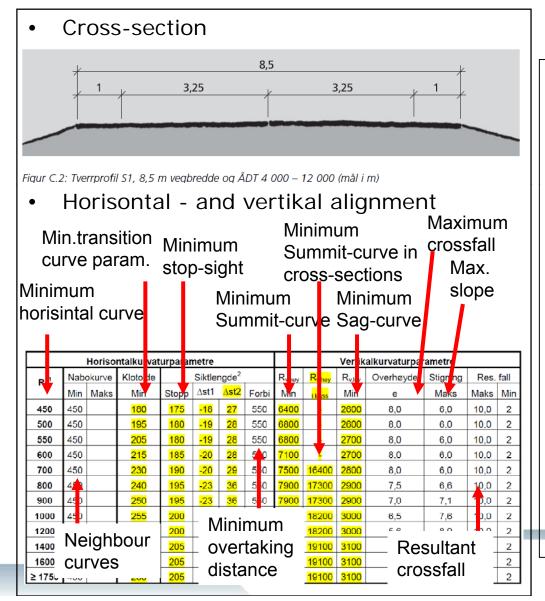


### Standard for improving existing roads

Randi Eggen

Norwegian Public Road Administration (NPRA)

Traffic Safety, Environment and Technology Department Section: Transport Planning

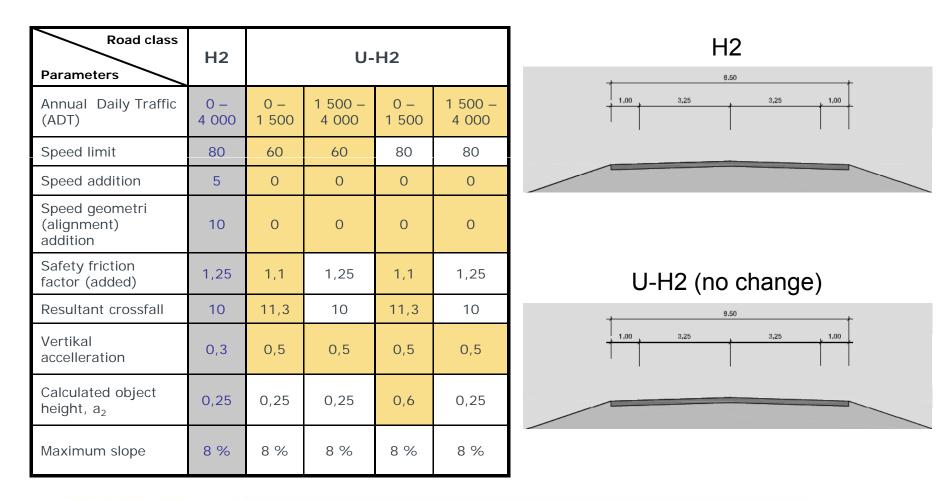

### Advantages

Reduced geometric standard compared to new roads.

- Gives better adapting to the terrain
- Cheaper than the new road standard
- In many cases: more realistic to accomplish



### Design-example (road class H3)




- Overtaking
- Recommended Junction types
- Private entrance, access conditions...
- Solutions for pedestrians and cyclists
- Public transport infrastructure
- Lighting
- Service facilities
- Standard vehicle and tracking

Statens vegvesen

Free height

#### Reduction of the basic parameters by choosing the "improvement road standard" for the road class H2





vegvesen.no

## Some of the aligment construction demands using improvement standard U-H2 for H2:

Caused by the change in the basic parameters the minimum alignment demands will be like this (when using improvement standard U-H2 instead of using road class H2):

| Road class<br>Parameters                         | H2        | <b>U-H2</b><br>ÅDT 0-1500<br>60 km/h | <b>U-H2</b><br>ÅDT 1500-4000<br>60 km/h | <b>U-H2</b><br>ÅDT 0-1500<br>80 km/h | <b>U-H2</b><br>ÅDT 1500-4000<br>80 km/h |
|--------------------------------------------------|-----------|--------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|
| Annual daily traffic (ADT)                       | 0 – 4 000 | 0 – 1 500                            | 1 500 – 4 000                           | 0 – 1 500                            | 1 500 – 4 000                           |
| Speed limit                                      | 80        | 60                                   | 60                                      | 80                                   | 80                                      |
| Minimum horisontal curve                         | 250       | 100                                  | 100                                     | 200                                  | 225                                     |
| Minimum transition curve<br>(chlotoid) parameter | 125       | 65                                   | 65                                      | 110                                  | 115                                     |
| Minimum stopsight                                | 115       | 60                                   | 65                                      | 100                                  | 105                                     |
| Minimum summit curve                             | 2800      | 700                                  | 800                                     | 1400                                 | 2300                                    |
| Minimum Sag-curve                                | 1900      | 600                                  | 600                                     | 1000                                 | 1000                                    |

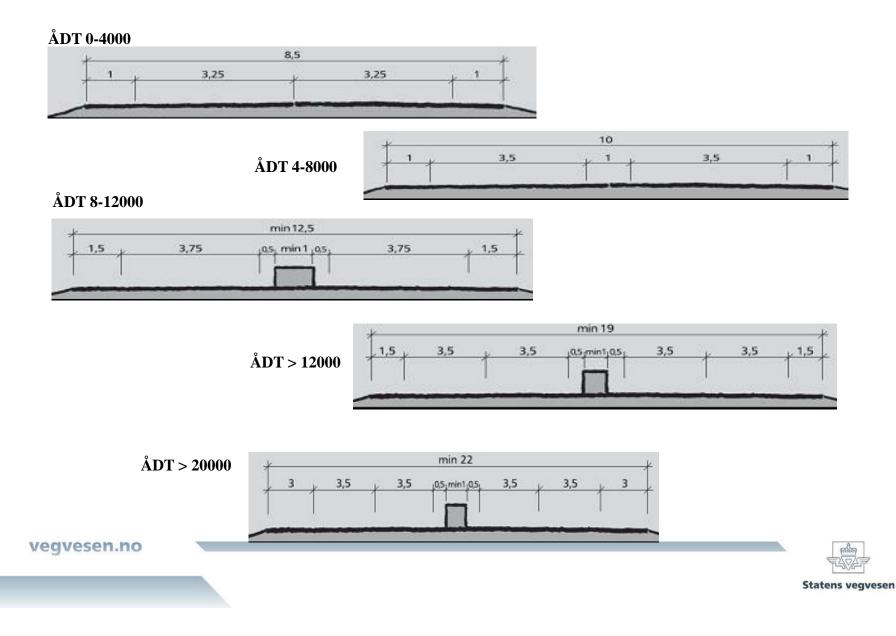


### Effects

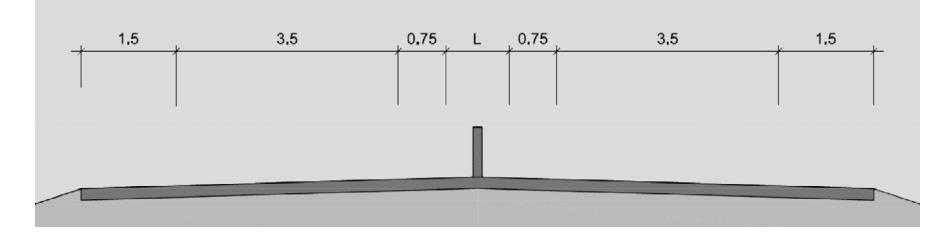
- Now we are working on calculating the consequences of implementing the reduced standard in Norway
- We hope the road will be cheaper to build and be almost as safe as a new built road
- The planning process will decide if we should build a new road or improve the existing road up to this defined standard






### Discussion

Randi Eggen


#### Norwegian Public Road Administration (NPRA)

Traffic Safety, Environment and Technology Department Section: Transport Planning

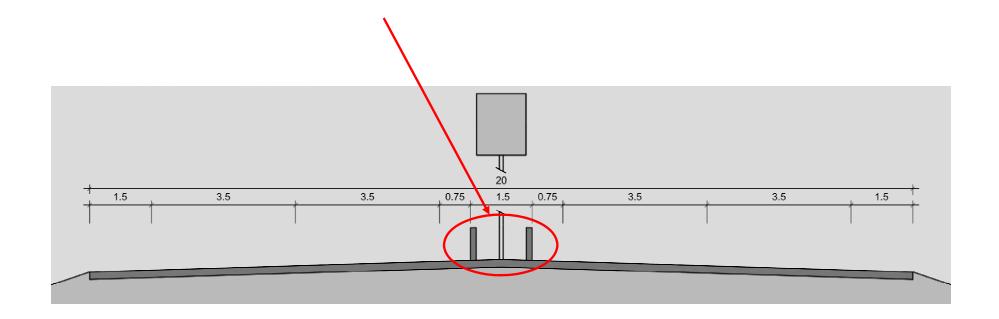
### Dagens krav - nasjonale hovedveger (V = 80-100 km/t)



### Median guardrail



For roads with 2 or 3 lanes it is recomended that signs are placed on the road's left side. The median width L will be determined from the width of the guardrail (Br) and the working width (W) of the guardrail. The width L is calculated like this:


L = 2(W-1,5 m) – Br when W > 1,5 m L = Br when W  $\leq$ 1,5 m

vegvesen.no



### Median

 Median used to separate two carriageways (design of multiple lane highways)





### Topics for discussion

- How narrow can 2 lane roads with central barrier be?
- For which traffic volumes can these type of roads be used?
- How do you design intersections on 2 lane roads with central barrier?
- Which criteria for overtaking possibilities should these roads have?



### Stopping spots (pockets) on highways

On highways with sholulderwidth of 1,5 m we now suggest to establish stop spots every 3rd km.

Do any of you have requirements like that?



vegvesen.no